您的位置:首页 >智能 >

神经拟态芯片拉近AI与人脑距离 靠一种样本学习多种气味

2020-04-10 15:40:50    来源:科技日报

除了会看会听,还会“闻”。近日,一直致力于模仿人类五感的人工智能又有新突破,通过神经拟态芯片,人工智能已经掌握了丙酮、氨和甲烷等10种气味的神经表征,强烈的环境干扰也不会影响它对气味的准确识别。这项由英特尔研究院与美国康奈尔大学共同参与的研究成果,日前发表于《自然·机器智能》杂志上。

神经拟态即通过模拟人脑神经元的工作机制,让计算机具备像人一样的自然智能特性。英特尔公布的另一项研究显示,将上述768块神经拟态芯片集成在5台标准服务器大小的机箱中形成的神经拟态系统——Pohoiki Springs,已经相当于拥有了1亿个神经元的大脑,而这相当于一个小型哺乳动物的大脑神经元数量。

通过堆叠芯片形成的神经拟态系统似乎让我们看到了“机器可以和人一样聪明”的希望,那神经拟态芯片及大规模集成系统的就绪,是否意味着“强认知、小样本学习”的神经拟态计算有了规模商用的可能?

神经拟态训练无需大量样本

目前深度学习算法作为实现人工智能的重要技术手段,被广泛应用于各类人工智能成果中。对于以深度学习算法为支撑的人工智能成果,数据可以说是研究的血液。数据量越大,数据质量越高,深度学习所表现的性能也就越好。但在不少研究环境中,由于涉及隐私安全以及客观条件限制,有效数据难以获得。

“深度学习虽然取得了长足进步,但仍局限在图像和语音等方面的分类和识别中。”英特尔中国研究院院长宋继强说,人类视觉、语音两类数据容易获得和标注,满足了深度学习的必要条件,研究及应用相对成熟,但味觉和嗅觉的研究却没那么乐观。( 刘艳)

相关阅读